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BIFURCATION AND CHAOS IN A RUB-IMPACT
JEFFCOTT ROTOR SYSTEM
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Non-linear vibration characteristics of a rub-impact Jeffcott rotor are investigated. The
system is two-dimensional, non-linear and periodic. Fourier series analysis and the Floquet
theory are used to perform qualitative global analysis on bifurcation and stability. The
governing ordinary differential equations are also integrated using a numerical method to
give the quantitative result. This preliminary study reveals the chaotic feature of the system.
After the rub-impact, as the rotating speed is increased, three kinds of routes to chaos are
found, that is, from a stable periodic motion through period doubling bifurcation, grazing
bifurcation and a sudden transition from periodic motion to chaos. Quasi-periodic motions
are also found.

7 1998 Academic Press Limited

1. INTRODUCTION

Rub-impact between rotor and stator is one of the main serious malfunctions that often
occur in rotating machinery. It shows a very complicated vibration phenomenon, including
not only periodic (synchronous and non-synchronous) components but also quasiperiodic
and chaotic motions. A comprehensive investigation on the dynamic characteristics
exhibited by this kind of system forms the basis to diagnose accurately this form of
fault.

Rotor-stator rub in a rotating assembly has attracted great concerns from researchers.
There have been numerous publications on this topic. Muszynska’s literature survey [1]
gave a list of previous papers on the rub-related vibration phenomena. She discussed the
physical meaning and the thermal effect of rub, various phenomena during rubbing,
analysis and vibration response of rubbing rotors, and other related phenomena. Beatty
[2] suggested a mathematical model for rubbing forces which were non-linear with a
piecewise linear form. The model is still widely used today. Through theoretical simulation
and laboratory verification he concluded some points for diagnosing this fault. Choy and
Padovan [3] performed a very interesting theoretical investigation to observe the effects
of casing stiffness, friction coefficient, imbalance load and system damping on rub force
history, and the transient response of rotor orbit. Shaw and Holmes [4] discussed a
periodically forced piecewise linear oscillator in a more mathematical way. Their results
showed harmonic, subharmonic and chaotic motions. This type of oscillator can be derived
from a rub-impact model and the discussion has a representative meaning. Thompson and
Stewart [5] studied an impact oscillator. The oscillator is shown to exhibit complex
dynamic behaviour including period-doubling bifurcation and chaotic motions. Choi and
Noah [6] examined the complex dynamic behaviour of a simple horizontal Jeffcott rotor
with bearing clearances. Numerical results have revealed that alternating periodic,
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aperiodic, and chaotic responses is governed by the rule of the Farey number tree. There
are mode-locking tongues in the parameter space and within each mode-locking tongue,
a number of smaller tongues exist where a sequence of period doubling bifurcations leading
to chaos takes place. Kim and Noah [7] used a modified Jeffcott model to determine the
onset of aperiodic whirling motion using bifurcation theory. Choi and Noah [8] presented
a numerical method which combined the harmonic balance method with discrete Fourier
transformation and inverse discrete Fourier transformation. Their numerical results
showed the occurrence of super- and subharmonics in a rotor model involving a bearing
clearance. Chancellor et al. [9] discussed a method of detecting parameter changes of a
piecewise-linear oscillator using analytical and experimental non-linear dynamics and
chaos. Chaotic time series for each of six parameter values was obtained. Movement of
the unstable periodic orbits in phase space was used to detect parameter changes in the
system. This suggested a possible way for the future fault diagnostics. Muszynska [10]
analyzed the physical phenomena related to partial lateral rotor to stator rub. Through
using a periodic step function the analysis showed the existence of harmonic vibrations
in the order 1/2, 1/3, 1/4, . . . ; experiment also confirmed the results. Adams and
Abu-Mahfouz [11] discussed the chaotic motions of a general rub-impact rotor model. The
influence of clearance variation was observed, and responses rich in subharmonic,
quasiperiodic and chaotic motions were obtained over a wide range of operating
parameters. Ehrich [12] analyzed the rotor dynamic response in non-linear anisotropic
mounting systems which represented a rotor system in local contact with the stator.
He found the chaotic response in transition zones between successive superharmonic
orders. In Isaksson’s paper [13], the ‘‘jump’’ phenomenon and the influence of
radial clearance were investigated. Recently Chu and Zhang [14] performed a
numerical investigation to observe periodic, quasi-periodic and chaotic motions in a
rub-impact rotor system supported on oil film bearings. Routes to and out of chaos were
analyzed.

The Jeffcott rotor system discussed in this paper is a non-linear vibrating system which
includes non-linear rub-impact forces resulting from eccentric rotation of the rotor. The
mathematical model is a non-linear and non-autonomous ordinary differential equation.
The Fourier series expansion method is used to obtain the analytical expression of the
stable periodic solution. Then, the differential equations of perturbation are established
based on the perturbation theory, and the Floquet theory is used to analyze the global
characteristics of the periodic solutions. A preliminary qualitative analysis is performed.
Finally the Runge–Kutta method is used to integrate this non-autonomous system
numerically. The preliminary theoretical analysis and numerical calculations reveal the
chaotic behaviour of this system. After the rub-impact, as the rotating speed is increased,
three kinds of routes to chaos are found, that is, from a stable periodic motion through
period doubling bifurcation and grazing bifurcation [15] to chaos, and a sudden transition
between periodic vibration and chaos. Quasi-periodic vibrations are also found. These
results are of great significance to the effective diagnostics of the rub-impact fault of a rotor
system.

2. MATHEMATICAL MODEL

2.1.   

The rub-impact model discussed is a Jeffcott rotor system and is shown in Figure 1. The
center of the stator is assumed as the origin of the co-ordinates. Displacements of the disc
center are (x, y). The rotor is acted on by gravitation mg, imbalance force induced by
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Figure 1. Schematic of the rub-impact rotor system.

U, and, when the rub-impact interaction occurs, the rub-impact forces Fx and Fy . The
system can be described by the following differential equations of motion as

6mẍ+ cẋ+ kx=Fx (x, y)+mUv2 cos (vt)
mÿ+ cẏ+ ky=Fy (x, y)+mUv2 sin (vt)−mg

(1)

where c is the damping coefficient of the shaft, k is the stiffness coefficient and U is the
imbalance.

2.2. - 

It is assumed that there is an initial clearance of d between rotor and stator. Compared
with one complete period of rotating, the time during rub-impact is very short, therefore,
an elastic impact model is used. Also the Coulomb type of frictional relationship is
assumed in the analysis. When rub happens as shown in Figure 2, the radial impact force
FN and the tangential rub force FT can thus be expressed as

FN (x, y)=60,
(e− d)kc ,

(for eQ d)
(for ee d)

FT = fFN

where f is the friction coefficient between rotor and stator, kc , is the radial stiffness of the
stator and e=zx2 + y2 is the radial displacement of the rotor. These two forces can be
written in x–y co-ordinates as

Fx (x, y)=−FN cos g+FT sin g

Fy (x, y)=−FN sin g−FT cos g
or 6Fx

Fy7=H(e− d)
(e− d)kc

e $1f −f
1 %6xy7 (2)

Figure 2. Schematic of rub and impact forces.
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where H: IR:IR is the Heaveside function, that is,

H(x)=60, xE 0
1, xq 0

.

Equation (2) indicates that when the rotor displacement e is smaller than d, the static
clearance between rotor and stator, there will be no rub-impact interaction and the
rub-impact forces are zero while the rub-impacting will happen if the rotor displacement
e is bigger than d.

3. BIFURCATION AND STABILITY ANALYSIS

The Fourier expansion and the Floquet theory are combined to give qualitative analysis
of stability and bifurcation for equations (1) and (2). The analysis indicates that there exists
a stable periodic solution for this system and this solution shows the period-doubling
bifurcation when the rotating speed is increased. First the Fourier expansion can be used
to derive the stable periodic solution of the system. Assuming Nt=vt, equation (1) can
then be written as

g
G

G

F

f

x0=
N2

mv2 Fx (x, y)−
cN
mv

x'−
kN2

mv2 x+UN2 cos Nt

y0=
N2

mv2 Fy (x, y)−
cN
mv

y'−
kN2

mv2 y+UN2 sin Nt−
gN2

v2

(3)

where '=d/dt and N is the subharmonic order. The stable periodic solution of equation
(3) is assumed as

g
G

G

F

f

x= a10 + s
ns

n=1

(a1n cos nt− b1n sin nt)

y= a20 + s
ns

n=1

(a2n cos nt− b2n sin nt)
(4)

where ns is the number of harmonics to be taken into account in the solution. Based on
equation (4), dx/dt, dy/dt, d2x/dt2 and d2y/dt2 can be obtained. Substituting these results
into both sides of equation (3), expanding the non-linear terms Fx and Fy on the right side
of equation (3) into Fourier series, and comparing coefficients of cos (nt) and sin (nt) on
both sides of equation (3) give the following non-linear equations containing 2(2ns +1)
equations:

F(x̄)= { f T
0 , f T

c1, . . . , f T
sns

}T =0

where x̄= {a10, a20, a11, a21, b11, b21, . . . , a1ns , a2ns , b1ns , b2ns}. (5)

These equations can be written as

a

2p g
2p

0

Fx dt− kaa10

f0 =$f01

f02%=G
G

G

G

G

K

k
a

2p g
2p

0

Fy dt− kaa20 −
gN2

v2

G
G

G

G

G

L

l

=0
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fcn =$fcn1

fcn2%
n2a1n +

a

p g
2p

0

Fx cos (nt) dt− kaa1n + bnb1n +UN2dnN

=G
G

G

G

G

K

k
n2a2n +

a

p g
2p

0

Fy cos (nt) dt− kaa2n + bnb2n

G
G

G

G

G

L

l

=0, n=1, 2, . . . , ns

fsn =$fsn1

fsn2%
−n2b1n +

a

p g
2p

0

Fx sin (nt) dt+ kab1n + bna1n

=G
G

G

G

G

K

k
−n2b2n +

a

p g
2p

0

Fy sin (nt) dt+ kab2n + bna2n +UN2dnN

G
G

G

G

G

L

l

=0, n=1, 2, . . . , ns

where a=(N2/mv2) and b=(cN/mv). The Inverse-Broyden Rank 1 method is used to
solve equation (5). The formulae for deriving the solution are

8x̄
k+1 = x̄k −Bk F(x̄k)

Bk+1 =Bk +
(Sk −Bk Yk) (Sk)TBk

(Sk)TBk Yk ,
and k=0, 1, 2, . . .

where Yk =F(x̄k+1)−F(x̄k), Sk = x̄k+1 − x̄k. Thus equation (4), the stable periodic
solution, can be obtained.

Next equation (3) is perturbed, that is, let x(t)= x0 +Dx(t), y(t)= y0 +Dy(t) (where
x0 (t) and y0 (t) are the stable periodic solutions obtained above using the Fourier
expansion) and substitute these expressions into equation (3). The non-linear terms in
equation (3) are expanded into the Taylor series at the point (x0 (t), y0 (t)). Retaining the
linear terms gives

g
G

G

G

G

F

f

Dẍ= a01Fx

1x
− k1Dx+ a

1Fx

1y
Dy− bDẋ

Dÿ= a
1Fy

1x
Dx+ a01Fy

1y
− k1Dy− bDẏ.

(6)

If U=(Dx, Dẋ, Dy, Dẏ)T, equation (6) can be expressed in matrix form as

6U� =A(t)U
A(t)=A(t+2p)

(7)
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T 1

Characteristics of the rub-impact rotor system at different rotating speeds

v/vc l1 l2 l3 l4 Conclusion

2·0 0·0671+ 0·0671− −0·0777+ −0·0777− Periodic solution is stable
0·1340i 0·1340i 0·1327i 0·1327i

5·4 −0·4710 0·0087+ 0·0087− −0·5269 Periodic solution is stable
0·4967i 0·4967i

6·2 −2·9987 0·1786+ 0·1786− −0·0989 Period-doubling bifurcation
0·5141i 0·5141i

8·0 −5·0009 0·3660+ 0·3660− −0·0779 Period-doubling bifurcation
0·5056i 0·5056i

14·8 0·7548+ 0·7548− −0·4477+ −0·4477− Periodic solution is stable
0·1669i 0·1669i 0·6353i 0·6353i

where

0 1 0 0

a01Fx

1x
− k1 −b a

1Fx

1y
0

A(t)=G
G

G

G

G

G

G

K

k

0 0 0 1
G
G

G

G

G

G

G

L

l

.

a
1Fy

1x
0 a01Fy

1y
− k1 −b

Equation (7) is a linear homogeneous ordinary differential equation with periodic
coefficients. The Floquet theory can be used to analyze bifurcation and stability of the
equations.

F(t) is assumed as the basic solution matrix of equation (7) and it has F(0)= I.
According to the basic theorem of linear ordinary differential equations, there exists a
non-singular constant matrix C=e2pR which satisfies F(t+2p)=F(t)C. When t=0,
F(0)= I and this leads to C=F(2p). Therefore, the monodromy matrix C can be
produced by integrating the first equation of equations (7) numerically four times, in
sequence, obtaining each time a solution {8( j)(t)} corresponding to a column matrix of
initial conditions with all its elements equal to zero except the element in the jth row, which
is equal to 1, and evaluating the solutions at t=2p [16]. Eigenvalues l1, l2, l3 and l4 of
matrix C are called the characteristic multipliers of the system. Concerning bifurcation and
stability of equation (3) there are the following conclusions: (1) When
=li =Q 1(i=1, 2, . . . , n and ns =a), the stable periodic solution of equation (3) is
asymptotically stable. (2) If there is one lj which passes the unit circle outwards through
the point of −1 and other =li =i$ j Q 1 (i=1, 2, . . . , n), the stable periodic solution will
have the period-doubling bifurcation. (3) If there is one lj which passes the unit circle
outwards through the point of +1 and other =li =i$ j Q 1 (i=1, 2, . . . , n), the
stable periodic solution will have the saddle-node bifurcation. (4) If there is a pair of
conjugate complex characteristic multipliers lj = a2 ib which pass the unit circle outwards
and other =li =i$ j Q 1 (i=1, 2, . . . , n), the stable periodic solution will have the Hopf
bifurcation or second Hopf bifurcation and the bifurcation will lead to an invariant torus.

The characteristic multipliers at different rotating speeds of v/vc are shown in Table 1
where vc =zk/m and four harmonic coefficients are retained for each of the
displacements, x and y.
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It can be seen from the above qualitative analysis that the system of equation (3) does
have the period-doubling bifurcation at some rotating speeds. Therefore, the system will
become unstable at high rotating speeds and may lead to chaos.

4. NUMERICAL SIMULATION OF CHAOTIC BEHAVIOUR

Equation (3) is a non-linear and non-autonomous system. When the partial rub happens,
partial derivatives of the non-linear terms Fx and Fy to x and y do not exist because of
the piecewise feature. However, the one-step method to numerically integrate the initial
value problem of the ordinary differential equation is convergent as soon as the Lipshitz
condition is satisfied. In the following numerical integration the fourth-order Runge–Kutta
method is used with chosen N=1. Equation (3) can then be re-written as

ẋ1 = x2

ẋ2 =
1

mv2 Fx (x1, y1)−
c

mv
x2 −

k
mv2 x1 +U cos t

g
G

G

G

G

F

f

ẏ1 = y2

ẏ2 =
1

mv2 Fy (x1, y1)−
c

mv
y2 −

k
mv2 y1 +U sin t−

g
v2. (8)

The right-side terms are the periodic functions with the period being 2p. During the
calculation a smaller integration step has to be chosen to ensure a stable solution and to
avoid the numerical divergence at the point where derivatives of Fx and Fy are
discontinuous. Generally long time-marching computation is needed to obtain a
convergent orbit. Poincare’s map is now used to investigate the stability and the bifurcation
characteristics of periodic orbits in equation (8). When the numerical integration is
performed to t=2kp (k=1, 2, . . . ), the point sequence obtained is generally called
Poincare’s maps. Figures of Poincare’s map and motion orbit after thousands of periods
of integration indicate that the system has the grazing bifurcation, and quasi-periodic and
chaotic motions as shown in Figures 3–12. It has to be pointed out that in the
figures presented in this paper data of 50 periods are used in all orbit plots and the different
scales are used in both the orbit plots and the Poincare’s maps in order to amplify the
orbits and the attractors. Also the motion of the system, in the form of x/d and y/d, is
recorded to form orbits and corresponding Poincare’s maps and bifurcation diagrams.

The parameter values used in the computation are as follows: mass m=4 kg, damping
coefficient c=0·12×104 N·s/m, stiffness coefficient k=0·25×106 N/m, impact stiffness

Figure 3. Bifurcation diagram by using v/vc as the control parameter.
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T 2

Different forms of motion at different rotating speeds

v/vc 2·5935246 2·5935247 2·61202254 2·61202255 2·73233701
Motion p2 chaos chaos p1 p1

v/vc 2·73233702 2·7498687 2·7498688 2·83000001 2·83000002
Motion chaos chaos p4 p10 chaos

coefficient kc =0·6×108 N/m, imbalance U=0·1×10−4 m, and friction coefficient
f=0·2.

Figure 3 is the bifurcation diagram obtained by using the rotating speed as the control
parameter. The horizontal axis is v/vc where vc =zk/m, the undamped natural
frequency of the system. It can be seen from the figure that at very low rotating speeds
system vibration is period-one (p1) motion. From about v/vc =2·6, motion enters into
a region of chaos. During this short interval of rotating speeds the chaotic motions exhibit
very rich forms and have many different shapes of Poincare’s maps. Figure 4 is a typical
picture of orbit and Poincare’s map in which v/vc =2·7498. At around v/vc =3·0 the
motion again becomes p1, and then p2 and p3. From v/vc =4·5 the system gradually
enters into another region of chaos. Figure 5 is the typical picture with v/vc being 4·9.
After this region the motion immediately becomes p2 and then p4. From about v/vc =6·4
there exists another region of chaos in which Figure 6 is a representative picture. In this
figure the Poincare’s map looks like a loosely extended result of that in Figure 5. Then
the motion is again periodic with a feature from p3 to p6. At about v/vc =8·4, the motion
has another chaos and a typical orbit and Poincare’s map is shown in Figure 7 where
v/vc =8·5. After this the motion is p4. Between v/vc =10·00 10·5 the motion is chaotic
and the fold of the Poincare’s map can be seen from Figure 8. From about v/vc =10·6,
the motion becomes p5. At around v/vc =11·5, the system re-enters into chaos. A typical
figure of this region is shown in Figure 9 where the Poincare’s map is divided into three
parts and the fold can be clearly seen. From about v/vc =12·6 the motion becomes p6
and gradually p12. And then another region of chaos appears. In Figure 10 where
v/vc =13·7 the Poincare’s map has a very confusing shape without any regular fold. From
the above analysis it can be seen that the motion of system alternates between periodic
vibration and chaos. After a region of chaos the period increases by a value of one. This
alternation between periodic motion and chaotic motion and the period-increasing
phenomenon are a type of important grazing bifurcation [15].

The routes to and out of chaos can now be investigated. As analyzed above between
v/vc =2·60 3·0, motion is very complicated and has many different forms. At
v/vc =2·5935246 it is a p2 motion and when v/vc =2·5935247 the motion becomes
chaotic. It is reasonable to consider the route to be a sudden transition from periodic
vibration to chaos. During this interval of rotating speeds the change in motion can be
seen from Table 2. All routes to and out of chaos contained in Table 2 are in the sudden
transition between periodic motion and chaos. In the region of chaos located at around
v/vc =5·0, the route to chaos can be seen from Table 3. Clearly this is a period-doubling

T 3

Different forms of motion at different rotating speeds

v/vc 4·60 4·655 4·667 4·6675 4·668 4·67
Motion p3 p6 p12 p24 p48 chaos
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Figure 11. Orbit (a), Poincare’s map (b) and motion waveform (c) for v/vc =7·3.

bifurcation route. In tracing the route out of this region it is found that at
v/vc =5·04249945 motion is chaotic and at v/vc =5·04249950 motion becomes p2.
Therefore this is a route of sudden transition from chaos to periodic motion. In the region
of chaos around v/vc =6·5, the route is also period-doubling bifurcation but in a different
format. It follows p2–p4–p8–p16–p32 . . . to chaos.

By increasing U, imbalance, to a new value of 0·2×10−4 m, some interesting results can
be observed. Figure 11 shows the orbit, waveform and the Poincare’s map for v/vc =7·3
where the attractor has a shape of butterfly bow and the motion is chaotic. At v/vc =19·3,
quasiperiodic motion is found as shown in Figure 12. The Poincare’s map has a closed
form.

5.. CONCLUSIONS

In the above calculation and analysis the grazing bifurcation sequence is found in the
rub-impact rotor system. This is a special phenomenon caused by the rub-impact process.
For the route to chaos, except the usual period-doubling bifurcation as in the
one-dimensional dynamical system, there exists a period-increasing feature. This
phenomenon can enrich our understanding to chaos and will promote the investigation
into bifurcation theory in the rub-impact rotor system and application.
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Both the qualitative theoretical analysis and the quantitative numerical calculation
indicate that the non-linear rub-impact action caused by the rotor imbalance makes the
dynamic characteristics of the system change from the stable periodic motion to the
period-doubling bifurcation, the grazing bifurcation, and quasi-periodic and chaotic
motion. These results are of great significance to the fault diagnosis of the rub-impact
problem.
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